

Dr. Mohammed I. Al-Qinna qinna@hu.edu.jo Soil Spatial Variability (1202471) 3 Credit Hours (2+3)

Course Description:

The course introduces sampling strategies for spatially variable. The course covers the role of spatial and temporal statistics in quantifying the magnitude and direction variabilities of soil properties. The course focuses on land management using s.

Aims:

- Introduce students to the concept of regionalized variable.
- Educate and train students on spatial-analysis models with emphasis on some soil applications.
- Differentiate between the point variables and core sampling variables in geospatial analysis.

Course Outline	Week
Introduction	
Statistics defined, statistics history, observations, variables, data presentation, one	1
variable, two variables, three variables, regionalized variables.	
Data Exploration	
Introduction, population and sampling theory, concepts and types of variables,	2-3
measures of central tendency, measures of dispersion, measures of shape, outliers,	
probability distributions, test of normality.	
Data Analyses	
Introduction, regression model analyses, curve fitting, criteria for choosing the "best	4-5
fit", nonlinear estimation.	
Correlogram	
Autocorrelation analysis, idealized correlograms, correlation length, correlation shape,	6-7
Moran I test, applications.	
Semi-variogram	
Fundamental principle of semi-variance, semi-variogram analysis and its components,	8-9
semi-variograms models, applications.	
The Volume-Variance Relationship	
Regularization, semivariograms for core samples, volume variance calculations,	10-11
grade/tonnage curves, applications.	
Estimation	
Introduction to the weighting factors, corner point technique, inverse distance	12-13
technique, variogram weighting factor technique, examples.	
Kriging	
Introduction, punctual kriging, block kriging, universal kriging, kriging examples,	14-15
kriging exploration.	
Temporal Analysis	
Definition of time scale variability, choosing the best fit, ARIMA, Seasonal ARIMA,	16
applications	

Textbook

Donald Nielsen. 2003. Spatial and Temporal Statistics. Sampling Field Soils and Their Vegetation. GeoEcology, Germany.

Extra Books

- 1. Isobel Clark. Practical Geostatisitcs.
- 2. Soil Science Society of America (SSSA). 1996. Applications of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone. Special Publication Number 48. Madison, Wisconsin, USA.
- 3. John C. Davis. 2002. Statistics and data analysis in geology. Wiley, John & Sons, Incorporated.
- 4. Roussos Dimitrakopoulos. 1993. Geostatistics for the next century. Kluwer
- 5. Rawlings, J.O, S.G. Pantula, and D.A. Dickey. 1998. Applied Regression Analysis: A Research Tool. Second Ed. Springer-Verlag, New York, Inc.
- 6. Wellmer, F.W. 1998. Statistical Evaluations in Exploration for Mineral Deposits. Springer, Berlin.

Programs

Evaluation

Theory (70%)	
First Hour Exam	15%
Second Hour Exam	15%
Final Hour Exam	40%
Laboratory (30%)	
Midterm	10%

Final Exam

20%

Aims are to:

- Introduce the students to the computer technology for handling geological data.
- Practice on entering, managing, and statistically analyzing different geological informations by computer.
- Allow the students to use different spatial programs to model and estimate a set of spatial geological data into kriged maps.

Course Outline	Week
Database and data Entry	2
Data Distribution Analysis	3
Testing Normaility	4-5
Correlation Analysis	6
Semivariogram Analysis	7-8
Kriging	9
Spatial Analysis in Practice	10-11
Temporal Statistics	12

Evaluation

Laboratory (30%)	
Midterm	10%
Final Exam	20%